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1  Introduction 
 

This white paper introduces the HUGIN Fraud Detection Management (FDM) solution, and gives an 

overview of the tasks involved in developing and implementing a fraud detection system based on 

HUGIN FDM from a technical and functional point of view. In addition to the technical and functional 

properties of the HUGIN FDM, this white paper also provides examples of solution integration using the 

HUGIN Java API. 

 

The target readers of this document are actuaries and IT staff members involved in the model 

development and system integration process. 

 

HUGIN FDM is an efficient solution for detecting fraudulent insurance claims based on advanced 

statistical graphical models. This document describes the process of developing and integrating a HUGIN 

fraud detection model (nonlife) into an existing IT platform using the HUGIN Java Application 

Programming Interface (API). 

 

Figure 1 below illustrates the use of the HUGIN FDM system in a nonlife claims handling process. 

The claims handler receives a claim and collects information on the claim. This information is entered 

into the claims handling system and combined with any information the company has on the client. To 

support the decision on whether to direct the claim to the fast track for payment and closing or to hand 

the claim over to a claims investigator, the user interface has a simple “traffic light”. The “traffic light” is 

a decision support system controlled by the HUGIN FDM. The traffic light improves the claims handler’s 

ability to make faster, more informed and consistent decisions on the likelihood that a claim is 

fraudulent. 

 

 
 
Figure 1: The HUGIN FDM implemented as a traffic light on the screen of claims handlers 
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2  Example of a HUGIN FDM model 
 
A central component in a model-based decision support system is the model.  A fraud detection model 

specifies dependence relations between a fraudulent claim and a set of fraud indicators and risk 

characteristics, including customer behavior and customer attributes. In particular, a fraud detection 

model specifies which behavior and customer attributes differentiate a fraudulent claim from a 

legitimate claim. 

 

 
 

Figure 2:   A simple HUGIN fraud detection model. 

 

Figure 2 illustrates a simple fraud detection model. The model describes the dependence relations 

between claim type, fraud, claim history, age, etc.  In the case of a burglary claim made by a male with a 

history of more than one claim who has recently increased the limits of his policy, the probability of the 

claim being fraudulent according to this model is 84.15%. Even with limited information the model can 

assess the probability of fraud. In this case, the given information indicates a high probability of fraud. 

 

The HUGIN FDM solution can also be used to generate a list of claims sorted by fraud probability as 

shown in Figure 3. The list is in descending order according to the value in the “Result” column. 

 

 

Figure 3:  A list of claims sorted according to fraud probability 
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Figure 3 shows one type of list that can be generated using HUGIN Graphical User Interface (GUI). 

Similar functionality can easily be integrated into existing IT platforms using a HUGIN API. 

 

3  HUGIN Fraud Model Construction 

 
The central component in a HUGIN FDM solution is the model. The model calculates the probability of 

fraud based on given information about the claim and the customer. In principle, the model can include 

any number of variables and have any graphical structure. Experience has shown that even a model with 

relatively few indicators and a simple structure as shown in Figure 2 can perform with impressive 

accuracy. 

 

A HUGIN FDM model is constructed from expert experience and domain knowledge, or historical data, 

or a combination of the two sources. The typical process of developing a fraud model consists of the 

following sequence of steps: 

 

1. Data collection and preparation 

 

2. Network structure specification 

 

3. Specification of expert knowledge and parameter estimation 

 

4. Model evaluation 

 

The HUGIN FDM system computes the fraud probability of a claim based on the knowledge represented 

in the fraud model and the information about the claim propagated in the model. 

 

Each node in the fraud model represents a variable, usually specifying either the target variable 

(hypothesis or classification variable) which is the variable indicating whether or not a claim is 

fraudulent or suspicious, or an indicator variable, which is an attribute of the claim or the customer used 

to differentiate between fraudulent and non-fraudulent insurance claims. A fraud model may also 

contain nodes that represent neither target nor indicator nodes. 

 

Besides the simple structure illustrated in Figure 2, a fraud model can have any acyclic, directed graph 

structure. The structure in Figure 2, however, is the most common fraud model structure and 

experience has shown that this type of model is well suited for fraud prediction. 

 

Figure 4 shows the model from Figure 2 in the HUGIN GUI with tables opened for the variables “Sex”, 

“Recent increase of policy limits” and “DiffClaimsDateAndDamage”. Each table represents the 

variables’ conditional probability given the variable “Result”. The entries of each table can be assessed 

either from expert domain knowledge and experience, estimated from historical data, or a combination 

of the two. For instance in Figure 4, the number 0.3 shown in the upper left corner of the “Sex” table is 

the conditional probability of “Sex=female” given “Result=normal”. This number can be assessed from 

expert knowledge and experience or estimated from data. 

 

The model is a quantitative representation of the knowledge, experience and historical data an insurer 

has on insurance fraud. This knowledge, experience and data increases constantly as the insurance 

company operates and the system is used. Over time, an insurer will acquire experience using the 

system, and it will be necessary to integrate new data and knowledge into the model. We suggest 

revisiting the model at least once a year to make sure the system is up to date. This will ensure that any 

changes can be incorporated into the knowledge representation. 
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Figure 4:  HUGIN FDM model 

 

4  FDM Integration Example  
 

This section describes how to integrate the HUGIN FDM into an existing IT platform. The two main tasks: 

 

1. To link each variable in the fraud model to the appropriate data source 

2.  To read and display the probability of fraud once updated beliefs are computed 

 

Integration of the HUGIN FDM solution into an existing IT platform is a simple task using a HUGIN API. 

Prior to integration, it is important to decide the probability of fraud will be displayed to the user. We 

suggest displaying fraud probability using a “traffic light” with colors red, yellow and green or only red 

and green. Integration consists of three steps: 

 

1. Each indicator variable is linked to a data source in the existing IT platform 

2. The belief of the state reflecting fraud in the target variable is linked to the “traffic light” (if traffic 

light display is used) 

3. Implement a method to collect and enter relevant data, update beliefs using the fraud model, and 

display the result 

 

Appendix A contains a complete example illustrating how to perform integration using the model shown 

in Figure 2. The example uses the HUGIN Java API and it consists of the following main steps: 

 

1. Load the fraud model from file 

2. Get handles to variables represented in the model 

3. Compile the model into a computational structure 

4. Enter observations from a sample claim 

5. Propagate evidence to compute the probability that the claim is fraudulent 

6. Display the results 

7. Remove observations related to claim 
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Steps 1-3 need only be performed once. Steps 4 to 7 are repeated each time the fraud probability of a 

claim is calculated.  

 

One of the main advantages of the HUGIN FDM solution is the clear separation between fraud model 

development, and the integration of the fraud model into an existing IT environment. Figure 5 illustrates 

the clear separation between model development, usually carried out by analysts and experts in the 

client organization, and system integration,  usually carried out by in-house IT staff, sometimes with 

assistance from HUGIN consultants. 

 
 
Figure 5:  HUGIN FDM offers clear separation between model development and system integration  

 

Once integration has been completed, it is a simple task to replace an existing model with a new one. If 

no new variables are added to the model, updating a model consists of replacing a single ASCII text file. 

If a new variable is added to the model, then this variable has to be linked to the appropriate data 

source. That is it. 

 

See chapter 1 of the HUGIN API Reference Manual for further technical details on the use of HUGIN APIs 

with different software and hardware platforms, including information on how to compile and execute 

applications using HUGIN API functionality. 

 

5  The Technology 
 

The technology behind the HUGIN FDM solution is called Bayesian Networks (also known as Bayesian 

Belief Networks, causal probabilistic models, Bayes nets, etc.). Bayesian networks are complex diagrams 

that organize the body of knowledge in a given area by mapping out cause and effect relations among 

key variables and assigning them with numbers that represent the extent to which one variable is likely 

to affect the other. This technology and HUGIN software have a long list of advantages over competing 

systems: 

 

• It combines expert knowledge and historical data. 

• It handles missing values in data and computes with partial observations. 

• Efficient inference engine making real time inference possible. 
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• Models and implementations are flexible and easy to maintain, extend and revise. 

• Models are easy to integrate into existing systems. 

• Intuitive graphical models make it easy to communicate about fraud risk and model properties. 

 

The technology and HUGIN software also support various types of analysis, for example, value of 

information analysis, parameter sensitivity analysis, evidence sensitivity analysis and data conflict 

analysis. These analysis methods can be helpful both in fraud model development and system usage. 

 

6  Functional information 
 

For easy reference and to provide the most useful information, the next 2 sections 6 and 7 are organized 

as question and answer sessions. 

 

6.1  Are Fraud Models available for all insurance segments? 

A HUGIN fraud detection model is developed in cooperation between domain experts such as claims 

handlers and SIU agents and a HUGIN consultant. Models can be developed for all insurance segments 

where there is access to domain expertise and/or historical data. 

 

A common approach is to develop a model for one segment and use this model as a starting point for 

developing models for other segments. The technology and tool are very flexible and support an 

iterative development process in which models are continuously refined and extended. 

 

6.2  Please describe the fraud detection options in the claims handling process 

A HUGIN fraud model describes probabilistic dependence relations between a "fraud" variable and a set 

of indicator variables such as sex, age, and claims history. The model computes the probability of fraud 

for a given claim in real time. The model computes with partial information (missing values). Thus, it is 

possible to compute the probability of fraud in real time each time new information is received, and the 

tool can suggest appropriate questions if represented in the model. 

 

The processing time depends on the complexity of the model, but for the most common types of fraud, 

model time and space complexity is linear in the number of indicator variables. The fraud detection 

model is a probabilistic graphical model (a Bayesian network) and it is usually static and updated only a 

few times a year.  

 

The HUGIN GUI has functionality for both manual refinement, and re-estimation of the model from data 

and expert knowledge. Once the model is integrated into an existing IT platform, it is only necessary to 

make additional integration efforts when the model is extended with new variables. There is a clear 

separation between model development and model integration. 

 

6.3  Does the tool offer additional workflow support for the claims handling process? 

The HUGIN tool supports conflict analysis to determine "surprising" observations, and value of 

information analysis to determine the most "valuable" next observations, such as questions to the 

client. The processing time of computations are based on the complexity of the model. 

 

6.4  Which data analysis capabilities / investigation support are available? 

The HUGIN Graphical User Interface has different data-analysis capabilities for identifying correlations 

between variables, and estimating the strength of correlations between variables from historical data. . 

The tool supports sensitivity analysis, value of information analysis and conflict analysis, the last of 

which supports the identification of "surprising" sets of observations 
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7  Technical information 
 

7.1  Please describe the software  

The HUGIN software package consists of the HUGIN Graphical User Interface for fraud model 

development and the HUGIN Decision Engine for fraud model integration. The HUGIN Decision Engine 

has APIs for C, C#, C++, Java and VBA. The HUGIN GUI is a Java implementation (using JNI) and the 

HUGIN Decision Engine is implemented using ISO C. 

 

7.2  Please describe the data requirements 

The HUGIN Graphical User Interface reads CSV files. The HUGIN Decision Engine has API functions for 

real time entering of data and reading data from file. The HUGIN tool does not store any data. 

 

7.3  How is the tool integrated into the existing workflow? 

The fraud detection model is integrated into an existing system using one of the APIs for the HUGIN 

Decision Engine. APIs are available for C, C#, C++, Java and VBA. The HUGIN Decision Engine contains 

functionality for entering information, computing the probability of fraud, and accessing the probability 

of fraud. The HUGIN FDM is usually implemented as a traffic light on the user interface of the claims 

handler. The HUGIN Graphical User Interface is only appropriate for analysts. 

 

7.4  What are the technical requirements of the necessary interfaces? 

The HUGIN Graphical User Interface is implemented in Java on top of the Java API for the HUGIN 

Decision Engine. The core of the HUGIN Decision Engine is implemented using ISO C for portability and 

efficiency reasons. The HUGIN Decision Engine has been deployed on a wide range of hardware 

platforms and operating systems, including PCs running Windows and Linux, Macs running Mac OS, PCs 

and SUN servers running Solaris, HP servers running HPUX, and IBM mainframes. 

 

7.5  Please describe the performance of the tool 

The HUGIN Decision Engine does not support user administration. The user of the HUGIN 

Decision Engine is responsible for the use of mutual exclusion variables, for instance if the model is to be 

accessed by multiple users at the same time. An alternative could be to have a dynamic pool of 

processes running the same model. The time and space complexity of the most common type of fraud 

detection model is linear in the number of indicator variables. The response time is hardware 

dependent. 

 

7.6  Please describe the administration requirements of the tool 

The HUGIN Graphical User Interface is installed on the desktop computer of the user, i.e., the analyst 

developing a fraud detection model. The HUGIN Decision Engine is distributed as a single file or a pair of 

files to be installed on the host computer. There is no user administration. A HUGIN FDM model is 

stored in a single file (usually as an ASCII file). This file can be accessed using the HUGIN Graphical User 

Interface and the HUGIN Decision Engine. If minor adjustments are made to an existing model, an 

update consists of replacing the file on the server.  

 

7.7  How are software updates handled? 

The HUGIN Graphical User Interface is a separate one-user program. The HUGIN GUI has functionality to 

automatically install new builds released on the HUGIN website. A new version of the HUGIN Decision 

Engine can be installed by replacing the existing files on the host. New versions of the software package 

are released 1-2 times each year. The functionality of the HUGIN Decision Engine is tested using a suite 

of testing programs. Updates are not mandatory. New updates are usually only installed on a host, when 

new functionality is required. This is rarely the case for fraud detection models. 
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Appendix A.  Java example source code 

/* 

* This simple Java program illustrates the integration of a simple HUGIN Fraud Detection Model. 

* The objective is to compute the posterior probability of fraud for a specific insurance claim. 

* Information on the claim is entered to the model and the posterior belief of fraud is computed and 

* displayed on standard output. 

* 

* The application is compiled with this command: 

* javac -cp hapi71.jar;. FraudIntegration.java 

* where hapi71.jar is the HUGIN Java API (version 7.1) 

* 

* The application is executed with this command (the dll/so file associated with the HUGIN Java 

* API should be placed in the current directory): 

* java -cp hapi71.jar;. FraudIntegration fraud.net where 

* fraud.net is the HUGIN network defining the fraud model. 

* 

* The output on standard output should be: P(Result=unusual | evidence) = 76,05% 

*  

* Author: Anders L Madsen @ HUGIN EXPERT A/S 

* 

* For any questions or comments, please contact the author at: alm@hugin.com 

*/ 

import COM.hugin.HAPI.*; 

import java.text.DecimalFormat; 

 

class FraudIntegration { 

   // the model 

   Domain dom = null; 

 

   // the nodes / variables in the model 

   LabelledDCNode Result, Sex, ClaimType; 

   // ... 

 

   // NumberedDCNode ...; // none in model 

 

   IntervalDCNode DiffDamageAndStart; 

   // ... 

 

   BooleanDCNode PolicyIncrease; 

   // ... 

 

   // ContinuousChanceNode ...; // none in model 

 

   public FraudIntegration (String name) 

   { 

        try { 

            // load model from file. Done once. 

           dom = new Domain (name, new DefaultClassParseListener ()); 

 

           // Get handles for the nodes of the model. One list of 

           // nodes for each node type. Done once. 
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          // ContinuousChanceNodes ... none in the example 

 

          // LabelledDCNodes 

          Result = (LabelledDCNode)dom.getNodeByName("Result"); 

          Sex = (LabelledDCNode)dom.getNodeByName("sex"); // Notice that node name is unique, not 

          //node label 

          ClaimType = (LabelledDCNode)dom.getNodeByName("type"); 

          // ... 

 

          // NumberedDCNodes 

          // ... 

 

          // BooleanDCNodes 

          PolicyIncrease = (BooleanDCNode)dom.getNodeByName("increase"); 

          // ... 

 

          // IntervalDCNodes 

          DiffDamageAndStart = (IntervalDCNode)dom.getNodeByName("DiffDamageAndStart"); 

          // ... 

 

      } catch (Exception e) { 

          e.printStackTrace (); 

          System.err.println (e.getMessage ()); 

     } 

} 

 

// Main procedure. This is where the actual calculations are performed. 

protected void doCalculations () { 

     DecimalFormat d = new DecimalFormat (); 

     d.setMaximumFractionDigits (2); 

 

     try{ 

          // compile the model for inference / analysis. Done once. 

         dom.compile (); 

 

          // link nodes (indicators) of model to data sources, use 

          // node name as unique identifier. In the example data is 

          // hard coded into the source code. The link between the 

          // data source and HUGIN is made once. 

           

          // in principle we should now have a loop over all cases, 

          // but we only consider a single case 

          // 1) insert information from case 

          insertEvidence (); 

  

          // 2) propagate evidence 

          dom.propagate(Domain.H_EQUILIBRIUM_SUM, Domain.H_EVIDENCE_MODE_NORMAL); 

 

          // 3) show belief of Result for the case 

          System.out.println ("P(Result="+Result.getStateLabel(1) +" | evidence) = " + 

                                                d.format(Result.getBelief (1) * 100) 

                                                +"%"); 
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          // 4) remove observations to prepare for next case 

          dom.initialize (); 

 

          // do steps 1-4 for all cases or each time the probability 

          // of fraud is to be updated (evidence can be entered 

          // incrementally. A propagation is required prior to 

          // accessing the posterior belief of Result 

     } catch (Exception e) { 

          e.printStackTrace (); 

          System.err.println (e.getMessage ()); 

     } 

} 

 

// It is very important that the data values entered matches the 

// state labels/values. Otherwise they are ignored. State labels 

// are case sensitive. Some values may need to be computed if not 

// presented in the data source (e.g., age) 

// 

// 

protected void insertEvidence () { 

          try{ 

          // case: auto claim of male with recent increase in policy and claim made 186 days after policy 

          //starts 

 

          enterObservation (ClaimType, "car"); 

          enterObservation (PolicyIncrease, "true"); 

          enterObservation (DiffDamageAndStart, 186); 

          enterObservation (Sex, "male"); 

 

          //... more data 

     } catch (Exception e) { 

          e.printStackTrace (); 

          System.err.println (e.getMessage ()); 

     } 

} 

 

// There is one enterObservation method for each node type 

protected void enterObservation (ContinuousChanceNode n, double value) { 

      try{ 

          n.enterValue (value); 

     } catch (Exception e) { 

          e.printStackTrace (); 

          System.err.println (e.getMessage ()); 

     } 

} 

// Notice that select state is case sensitive. getStateIndex returns -1 for unmathed values. 

protected void enterObservation (LabelledDCNode n, String label) { 

          try{ 

             n.selectState (n.getStateIndex (label)); 
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        } catch (Exception e) { 

            e.printStackTrace (); 

            System.err.println (e.getMessage ()); 

        } 

} 

 

protected void enterObservation (BooleanDCNode n, String label) { 

         try{ 

             n.selectState (n.getStateIndex (label)); 

         } catch (Exception e) { 

             e.printStackTrace (); 

             System.err.println (e.getMessage ()); 

         } 

} 

  

protected void enterObservation (NumberedDCNode n, double value) { 

          try{ 

             n.selectState (n.getStateIndex (value)); 

         } catch (Exception e) { 

             e.printStackTrace (); 

             System.err.println (e.getMessage ()); 

        } 

} 

 

protected void enterObservation (IntervalDCNode n, double value) { 

           try{ 

               n.selectState (n.getStateIndex (value)); 

           } catch (Exception e) { 

               e.printStackTrace (); 

               System.err.println (e.getMessage ()); 

          } 

} 

 

static public void main (String args[]) 

{ 

          if (args.length != 1) { 

              System.out.println ("usage: <net>"); 

              System.exit (-1); 

          } 

          FraudIntegration fi = new FraudIntegration (args[0]); 

          fi.doCalculations (); 

  } 

} 
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Appendix B.  System performance 
 

We have performed a series of experiments to assess and demonstrate the performance of the 

HUGIN FDM solution on two different examples of fraud detection models. Model M is a model 

with 18 indicators used by one of our HUGIN FDM customers, and Model N is the same model 

with 9 indicators. 

 

To assess the performance of the HUGIN FDM, we have analyzed the time usage of estimating 

the parameters of the models from data sets of different sizes and computing the probability of 

fraud for each case in the same data sets. 

 

The results of the experiment are shown in the tables below where time is specified in seconds. The 

experiments have been performed on a desktop PC (CPU i7 920, 12 GB RAM, Windows Vista) using the 

HUGIN Java API version 7.2 and Java 6 update 17. 

 

The performance of the parameter estimation is shown in the table below (threshold value on number 

of iterations is zero and convergence threshold is 0.0001). 

 

 

 Data set size 

Model 10000 50000 100000 500000 

M (18) 1.08 5.39 10.89 54.45 

N (9) 0.23 0.77 1.53 7.66 

Table 1 : Run time performance of parameter estimation (in seconds). 

 

The performance of the computing probabilities (also known as belief update) is shown in the table 

below. This includes entering each case as evidence into the model, propagation of evidence, and 

computing marginal beliefs. 

 

 Data set size 

Model 10000 50000 100000 500000 

M (18) 0.74 3.80 7.13 34.91 

N (9) 0.37 1.83 3.65 18.15 

Table 2: Run time performance of belief update (in seconds). 

 

Data set has been randomly generated from the true model with 5% missing values (missing completely 

at random). The experiments illustrate the high performance of HUGIN FDM on a standard desktop PC. 

The time usage grows approximately linear with the size of the data sets of each model. 

 

The conclusion is that parameter estimation of this type of model is very efficient and that large sets of 

cases can be analyzed in batch. Both batch and real time belief update is very efficient in the type of 

models used in this experiment. For instance, in model M the performance of belief update is 



 

 

 

approximately 14.000cases/second

performance of model M. 

 

 

Appendix C.  Further information

 
Figure 6 illustrates the architecture of the HUGIN APIs. The HUGIN Decision Engine is

ISO C. This makes the HUGIN Decision Engine highly portable and efficient. On

implementation, a layer of APIs is

languages such as C, C++, C#, Java and as an ActiveX Server for Visual Basic

 

 

Since the HUGIN Decision Engine is implemented in ISO C, it is highly portable. Instances of the

Decision Engine are known to run

Microsoft Windows, SUN Solaris, et cetera and a number of differ

PDAs over Mac and PC to mainframe systems. The HUGIN Decision

CPU platforms and it available in both 32bit and 64bit

 

Chapter 1 of the HUGIN API Reference Manual provides det

on different platforms and hardware.
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nformation 

Figure 6 illustrates the architecture of the HUGIN APIs. The HUGIN Decision Engine is

ISO C. This makes the HUGIN Decision Engine highly portable and efficient. On

a layer of APIs is implemented. APIs are implemented for major programming 

languages such as C, C++, C#, Java and as an ActiveX Server for Visual Basic for Applications.

 
 

Figure 6: The HUGIN API architecture 

 

HUGIN Decision Engine is implemented in ISO C, it is highly portable. Instances of the

Decision Engine are known to run, or have run, on a number of different platforms

Microsoft Windows, SUN Solaris, et cetera and a number of different hardware

PDAs over Mac and PC to mainframe systems. The HUGIN Decision Engine runs on multi

CPU platforms and it available in both 32bit and 64bit versions. 

Chapter 1 of the HUGIN API Reference Manual provides details on the use of the different

on different platforms and hardware. 

approximately twice the 

Figure 6 illustrates the architecture of the HUGIN APIs. The HUGIN Decision Engine is implemented in 

ISO C. This makes the HUGIN Decision Engine highly portable and efficient. On top of the ISO C 

major programming 

for Applications. 

HUGIN Decision Engine is implemented in ISO C, it is highly portable. Instances of the HUGIN 

on a number of different platforms including Linux, 

ent hardware platforms ranging from 

Engine runs on multi-user and multi 

ails on the use of the different HUGIN APIs 


